Search results for "partial data"
showing 7 items of 7 documents
Partial data inverse problems for Maxwell equations via Carleman estimates
2015
In this article we consider an inverse boundary value problem for the time-harmonic Maxwell equations. We show that the electromagnetic material parameters are determined by boundary measurements where part of the boundary data is measured on a possibly very small set. This is an extension of earlier scalar results of Bukhgeim-Uhlmann and Kenig-Sj\"ostrand-Uhlmann to the Maxwell system. The main contribution is to show that the Carleman estimate approach to scalar partial data inverse problems introduced in those works can be carried over to the Maxwell system.
Partial data inverse problems for the Hodge Laplacian
2017
We prove uniqueness results for a Calderon type inverse problem for the Hodge Laplacian acting on graded forms on certain manifolds in three dimensions. In particular, we show that partial measurements of the relative-to-absolute or absolute-to-relative boundary value maps uniquely determine a zeroth order potential. The method is based on Carleman estimates for the Hodge Laplacian with relative or absolute boundary conditions, and on the construction of complex geometric optics solutions which reduce the Calderon type problem to a tensor tomography problem for 2-tensors. The arguments in this paper allow to establish partial data results for elliptic systems that generalize the scalar resu…
On the scientific work of Victor Isakov
2022
The Calderón problem with partial data on manifolds and applications
2013
We consider Calderon's inverse problem with partial data in dimensions $n \geq 3$. If the inaccessible part of the boundary satisfies a (conformal) flatness condition in one direction, we show that this problem reduces to the invertibility of a broken geodesic ray transform. In Euclidean space, sets satisfying the flatness condition include parts of cylindrical sets, conical sets, and surfaces of revolution. We prove local uniqueness in the Calderon problem with partial data in admissible geometries, and global uniqueness under an additional concavity assumption. This work unifies two earlier approaches to this problem (\cite{KSU} and \cite{I}) and extends both. The proofs are based on impr…
Determining an unbounded potential for an elliptic equation with a power type nonlinearity
2022
In this article we focus on inverse problems for a semilinear elliptic equation. We show that a potential $q$ in $L^{n/2+\varepsilon}$, $\varepsilon>0$, can be determined from the full and partial Dirichlet-to-Neumann map. This extends the results from [M. Lassas, T. Liimatainen, Y.-H. Lin, and M. Salo, Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations, Rev. Mat. Iberoam. (2021)] where this is shown for H\"older continuous potentials. Also we show that when the Dirichlet-to-Neumann map is restricted to one point on the boundary, it is possible to determine a potential $q$ in $L^{n+\varepsilon}$. The authors of arXiv:2202.0…
Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations
2021
We study various partial data inverse boundary value problems for the semilinear elliptic equation $\Delta u+ a(x,u)=0$ in a domain in $\mathbb R^n$ by using the higher order linearization technique introduced in [LLS 19, FO19]. We show that the Dirichlet-to-Neumann map of the above equation determines the Taylor series of $a(x,z)$ at $z=0$ under general assumptions on $a(x,z)$. The determination of the Taylor series can be done in parallel with the detection of an unknown cavity inside the domain or an unknown part of the boundary of the domain. The method relies on the solution of the linearized partial data Calder\'on problem [FKSU09], and implies the solution of partial data problems fo…
On some partial data Calderón type problems with mixed boundary conditions
2021
In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal Calderón type problems. We prove two main results on these type of problems: On the one hand, we derive simultaneous bulk and boundary Runge approximation results. Building on these, we deduce uniqueness for localized bulk and boundary potentials. On the other hand, we construct a family of CGO solutions associated with the corresponding equations. These allow us to deduce uniqueness results for arbitrary bounded, not necessarily localized bulk and boundary potentials. T…